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This paper discusses the approach to the analysis of measurements in 
quantum mechanics which is based on a set of "detection operators" 
forming a resolution of identity. The expectation value of each of these 
operators furnishes the counting rate at a detector for any object state 
that is prepared. "Predictable measurements" are those for which there 
is a representation in which only one element of each diagonal matrix 
representing each operator is not zero. A set of commuting detection 
operators defines the class of "spectral measurements", which may be 
either predictable or not. An even more general definition of measure- 
ment may be given by abandoning the requirement of commutativity of 
the detection operators. In this case one cannot define an observable 
which corresponds to a single self-adjoint operator, which violates the 
standard theory of quantum mechanical measurement. Simple 
experimental realizations of each of these classes of measurement are 
suggested. 

Key words: quantum measurements, observables, distinguishability of 
states, insolubility proofs, polarization experiments. 

1. PREDICTABLE MEASUREMENTS 

Several measurements performed on identically prepared quantum 
systems in general do not yield one single result, but a spread of out- 
comes. A measurement has been called predictable [1] if each of the 
possible outcomes of the measurement can be obtained with certainty 
from some preparation of the initial object state. Each object state that 
yields a predictable outcome is represented by a unit vector I 4~, ) in the 
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object Hilbert space ~f~,, which we assume for simplicity to be finite- 
dimensional. The set { J 4~, > } forms an orthonormal basis spanning ~,. 
Predictable measurements include both repeatable and non-repeatable 
measurements, which have also been respectively called measurements 
of the "lst" and "2nd kind" [2]. 

According to the standard approach to quantum measurements 
[3,4], the measurementof any physical quantity can be associated with 
a self-adjoint operator O acting on ~rf,,, and the possible outcomes of an 
individual measurement are the eigenvalues % of O, each of which 
corresponds to an eigenstate I 4,, >, satisfying: 

6 14~,) = 7, l~5,>. (1) 

The measured physical quantity which is associated to a self-adjoint 
operator is calledan "observable". 

Defining P[qS,] -= I ~, > (ck,[ as the projection operator onto the 
subspace spanned by 14~,>, the operator O corresponding to the 
observable being measured can be written, according to the spectral 
theorem [4], as O = Z 7, P[,b,]. For a generic initial object state 
]~ % 14~ >, the probability, for each outcome "/~ is given by I a, 1 ~ 
' As a trivial example of a predictable measurement, consider the 
measurement of linear polarization of a light beam shown in Fig. I. The 
beam passes through a birefringent analyzer A such as a Wollaston prism 
and is separated into two channels, each of which falls on a detector, 
either D, or D~. It is easy to prepare a beam such that only one of the 
detectors triggers. One can prepare such a beam by passing it through 
a dichroic polarizer F oriented at an appropriate angle, which we will 
denote by 0 °, and which depends on the orientation of the analyzer. A 
beam that will only trigger the second detector can be prepared by 
initially passing it through a filter oriented at 90 °. Such pure beams 
may be described by orthogonal states I 4,, > and I ~2 >, which span the 
two-dimensional object Hilbert space ~-(,. The observable being measured 
in this experimental setup is represented by O = 7,P[4h] + 72P[~b2], 
where the eigenvalues 7, indicate linear polarizations at 0 ° and at 90 °. 

F 

) .  
Di 

A 9 0 ° ~  

D:~ 

Fig. 1. Example of a predictable measurement in optics. 
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2. T H E  D E T E C T I O N  O P E R A T O R  

How is the association between a physical quantity (an 
observable) and an operator established? A measurement involves 
basically three stages. The object system is initially prepared (by some 
procedure) in a certain state, which for generality can be represented by 
a density operator W. The system then interacts with parts of  a 
measuring apparatus, such as a target or a magnetic field. After 
interaction, detection or registration takes place. Registration usually 
involves several spatially distributed detectors, which we will label by 
the letter u (for a detecting screen, each of its points can be considered 
a separate detector). 

If  the object system corresponds to a single particle, we then 
have an "individual measurement",  and at most one of the detectors will 
trigger. Usually, however, the preparation procedure generates many 
particles, which under favorable conditions can be collectively described 
by a density operator, and we have an "ensemble of  measurements".  In 
this case each detector registers a counting rate, which after 
normalization furnishes a probability distribution ~,~(u) for detection at 
each detector u, for a system prepared in the state W. 

A "statistical model" of quantum mechanics [5] views a measure- 
ment as an affine mapping from the set of  states W onto the set of  
probability distributions ~w(U). To express such a mapping, one can 
define in ~ an operator M(u) for each detector, so that the expectation 
value of  M(u) over the initial object state W furnishes the probability 
~w(U) for a count at detector u: 

p.w(U) = Tr (~/ l~I(u)). (2) 

We will call l~(u) "detection operators". Each IVI(u) is positive, 
i.e., (4) I IVI(u) I q5 ) _> 0 for any state vector I q5 ) (number of  counts 
or probabilities are non-negative numbers), and self-adjoint. Each is 
normalized so that its trace is 1. If all the prepared particles are 
detected, one can show [5] that the set of  detection operators forms a 
resolution of  identity: 

M(u) = i. (3) 
u 

One can express the detection operators in terms of  the evolution 
operators U, which were introduced by von Neumann to describe the 
interaction between object and apparatus during measurement [6]. The 
resolution of  identity (3) is equivalent to the requirement that these 
evolution operators be unitary [7]. 

A predictable measurement (which has also been called a simple 
measurement [5], or, in the case in which there are only two detection 
operators, a simplelest [8] or a decision effect [9]) is one in which each 
detection operator M(u) corresponds to a projection operator P[4,1] onto 
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the subspace spanned by an eigenstate I~ ,> ,  such as in (1). This 
implies not only that M(u)~= lVI(u), but also [5] that M(u) and M(u') are 
orthogonal projections: 

For any u;~u' ,  lVl(u)IVl(u') = 0. (4) 

In the example of predictable measurement of the previous 
section, the detection operators are represented in a simple manner by 
the following matrices in the basis of representation { 1 ~ ) ,  I 4)., ) } : 

m(1) = , m(2) = (5) 
0 0 0 1 

For any predictable measurement, there is always a representation 
in which the detection operators can be expressed by diagonal matrices 
with only one non-zero element. 

3. NON-PREDICTABLE SPECTRAL MEASUREMENTS 

The standard approach to measurements in quantum mechanics 
hinges on conditions (3) and (4), which define orthogonal resolutions of 
identity (or projection-valued measures). It can be argued, however, that 
actual physical measurements are never predictable, clue to non-ideal 
efficiencies of  analyzers [8]. Furthermore, there is no a priori reason 
why there could not be non-orthogonal resolutions of identity (positive 
operator-valued measures, also called "semispectral resolutions" [10]), 
corresponding to non-predictable generalized measurements. 

In 1940 M.A. Naimark considered this possibility, but he proved 
a theorem [11-14] which in a sense reduces non-predictable measure- 
n)ents to simple ones. Given a non-orthogonal resolution of identity for 
M(u) in :~(,, satisfying (3) but not (4), one can introduce an auxiliary 
Hilbert space :~,  such that there is always an orthogonal set of 
projection operators in 'Jf~, ® '3q satisfying (3) and (4), and which reduce 
to {M(u)} when a partial trace is performed over states in :Jr., (i.e., when 
the operators are projected onto :3(,). The standard approach can in this 
way be said to apply even when the statistical correlations between state 
preparations and counting rates at the different detectors give rise to 
operators M(u) which are not orthogonal projectors. One can argue that 
what is really being measured in this case does not correspond to non- 
orthogonal operators in :,W,,, but to a set of orthogonal ones in ~ ® :lq.  

In spite of the mathematical correctness of the theorem, the above 
strategy for saving the standard approach appears to be abstract and ad 
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hoc: in concrete generalized measurements there is probably no physical 
means of  establishing the existence of an auxiliary system which behaves 
in the required way. 

The first to introduce general resolutions of identity in quantum 
measurement theory were Davies and Lewis [15] in 1970. They 
considered the description of  a succession of measurements on an object 
system, and were concerned with the fact that if two observables 
corresponding to non-commuting operators were measured one after the 
other, then the probabilities of  detection of the overall process could not 
be obtained from a measurement of a single observable in the standard 
theory [16]. They therefore extended the definition of  what counts as a 
measurement to positive operator-valued measures, and also generalized 
the notion of  "observable" to include the "conditioned observables" 
associated with non-orthogonal resolutions of identity. 

Let us consider an example which illustrates a succession of 
simple measurements of  observables associated with operators which do 
not commute, and see that the detection operators are not orthogonal. 
We will consider a beam of light which passes by a sequence of 
polarization analyzers in non-orthogonal orientations, with all the 
separated beams falling on one of two detectors. 

A beam of light is separated at the birefringent prism AL, oriented 
at 0 = 0  ° (see Fig. 2). The "top component" I q6~ > which is polarized 
at 0 ° falls on detector D~. The "bottom component" [ ¢,: > polarized at 
90 ° falls on analyzer A2 oriented at 0=45 ° , and so is split into a com- 
ponent polarized at 45 °, which also is collected at detector D~, and a 
component polarized at 135 °, which falls on detector D> The setup is 
such that the two beams falling on D~ do not interfere. Strictly speaking, 
the situation depicted does not correspond to a succession of  measure- 
ments (as considered by Davies and Lewis), but to a single measurement 
(an ensemble of  measurements), since detection of a photon only occurs 
after it has passed the set of analyzers. 

A, ~ r "  

Fig. 2. Measurement involving a succession of  analyzers 
oriented at non-orthogonal directions. 
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A brief calculation furnishes the following detection operators, in 
the representation { p ~ ) ,  I ~2 ) } : 

f 101 t 0 0 l 1Vl(1) = , IVl(2) = (6) 
I 1 

0 i 0 3 

These operators are clearly not orthogonal, violating (4). We 
therefore have a measurement the outcomes of  which cannot be 
described by a simple measurement in the standard approach. The 
measurement is not predictable, since there is no state preparation that 
will trigger with certainty detector D~, although it is simple to prepare 
a state that will trigger DI for sure. 

We could complicate the setup a little further by introducing a 
third analyzer A3 oriented at 0=30  ° in the path of  the "top component" 
(Fig. 3), and detecting the resulting beams polarized at 30 ° and at 120 °, 
respectively, at DI and D2. The resulting detection operators are 
represented by: 

1Vl(l) ~ Z 0 = , r~(2) = (7) 
| | 

0 5 0 ~- 

Once again, the matrices representing the detection operators are 
not orthogonal, but they commute. Although the measurement violates 
(4), could one construct an operator O which satisfies (1), so that a 
single observable (in the sense of  the standard approach) could be 

0 = ,15" ~- AT DI 

111111/* 

Fig. 3. Realization of a non-predictable spectral measurement. 
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associated to the measurement? The answer is yes. For the 
measurement given by (7), the operator which satisfies (I) can be 
expressed in terms of the detection operators M(u) as follows: 

6 = (23,,- 72)IvI(I) + (-2% + 37:)r~I(2) = 3',0, + 3'202. (8) 

Non-predictable measurements with commuting detection 
operators (which for P=2 have been called mLred tests [8] or effects [9]) 
can therefore be said to be described by the standard approach, although 
they violate (4). If the number of detectors P is not greater than the 
dimensionality K of the object Hilbert space ~ (in the above case, 
P=K=2 ) ,  the measurement may be termed non-redundant. A non- 
redundant measurement will be called a spectral measurement if the 
detection operators form a mutually commuting set: 

For any u,u', IVl(u)IQ(u') - IQ(u')l~l(u) = O. (9) 

By means of a spectral measurement one is able to "distinguish" 
two object states 14, ) - Z a,[4,1 ) and 14~') -= E a', 14,, ) , 
which in the representation { 1'4~, ) } (of the eigenstates of [he operator 
0 corresponding to the observable being measured) are such that 
I a~ [ ~ ~ I a~ ] 2 for at least one of the indices i. A precise definition 

of such "O-distinguishability" for spectral measurements was provided 
by Fine [6], in his definition of "W,-measurements" (which are 
equivalent to spectral measurements). The dimensionality K' of the 
largest subspace of ~,, whose vectors can be distinguished in this way 
defines the property of K'-distinguishabilio,. If K is the dimension of ~ ,  
then a measurement such as the above which is K-distinguishing may be 
termed non-degenerate. 

4. NON-SPECTRAL MEASUREMENTS 

A non-spectral measurement would involve a set of detection 
operators that are not mutually commuting. It is possible to arrange 
such a measurement simply by splitting the incoming beam into two 
spatially separated parts, which in the optical case can be realized with 
a half-silvered mirror. The observables measured in each part would be 
chosen so that the operators corresponding to them would not commute. 
This in fact constitutes the most efficient way of determining the state of 
an object system [17]. 

It turns out that for a 2-dimensional object space, there is no non- 
spectral measurement which is non-redundant ( K = P = 2 )  and for which 
all of the prepared beam is detected, satisfying the resolution of identity 
(3). In higher-dimensional cases, however, there exist in principle such 
unitary spectral measurements in which no part of prepared beam is lost. 
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Fig. 4. Realization of a non-spectral measurement with spin-1 particles. 

As an example of a 3-dimensional object space, consider a beam 
of spin-I particles, as illustrated in Fig. 4. We assume that the beam 
can be spatially separated at H into two parts irrespective of its spin 
state, and that each part passes through a Stern-Gerlach analyzer which 
coherently separates the beam into three spin components. The two 
analyzers used are oriented in different angles, so that the "top" analyzer 
A, separates the beam into the spin eigenstates I 4,, >, I 4,2 >, I 4'3 >, 
while the "bottom" one A 2 separates the beam into orthogonal states 
I 4,i >, I 4,~ >, I 4,~ >, given for instance by: 

, 1 l 
I~ ,>  = ,,'--5 14,,5 + 7 i  14,~>, 

i 1 l 
14,~> = "~14,~> + ~ 1 4 , 2 )  - ~14,3>, (10) 

I ! 1 
14,]> = -~14,,> + ~ 1 4 ' 2 >  + ; t % > .  

The different separated beams fall on one of three detectors, as 
shown in Fig. 4. The computation of each detection operator yields: 

3 1 [ ] ! 3 I 
0 0 0 , i'¢1 (2) = ,,,,,-5 ~ Z,-i 

1 0 | 1 1 ! 
7 7 7 ~2 7 
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M(3) 

I 1 I I ] 
I I I 

= - ~ - 2  4 * / 2  

1 1 5 
~2 T 

The above set of detection operators is non-redundant and K- 
distinguishing (for K=3)  but not pairwise commuting, so the 
measurement is clearly non-spectral. Pairs of object states can be 
distinguished, but not according to Fine's criterion. Contrary to the 
case of  spectral measurements, one can in general distinguish 
states 14, )  =-- ~ a, 14,i) and 14, ' )  -~ 2; a ' ,14, ,)  for which the 
members of  each' pair a ,  a' ,  differ only 6y a relative phase (i.e., 
I a~ I 2 = I a] I 2), whatever the orthonormal basis { I 4,i ) } may be. 

On the other hand, for non-spectral measurements, a convenient choice 
of basis states may make a pair of indistinguishable states t 4, ) ,  I 4,' ) ,  
differ only by relative phases, but in general there will be other states 
14,") that are also indistinguishable from the pair, but for which 
I al ] 2 ;~ I a~' I 2 for some i. These properties violate Fine's criterion 

of distinguishability. 

5. C O N C L U S I O N S  

Non-spectral measurements are adequately described by the 
positive operator-valued measures introduced by Davies and Lewis and 
by Holevo, but it is clear that they cannot be described by the standard 
approach to measurements in QM, which is restricted to commutative 
resolutions of  identity. There is no criterion for finding an operator O 
with a unique set of eigenstates that satisfies (1) and that can be 
associated with the non-spectral measurement. Thus the notion of 
"observable" cannot be applied to non-spectral measurements, at least as 
it is defined by the standard theory of measurement. The notion that is 
more suitable to the generalized class of measurements is that of a set of 
detection operators which form a resolution of identity (a positive 
operator-valued measure), which has been called a "unorthodox 
measurement" [101. 

One consequence of  this conclusion bears on the so-called 
"insolubility proofs of  the measurement problem" [18]. The most 
general insolubility proof was developed by Fine [19] for his W,- 
measurements, which are equivalent to spectral ones. Non-spectral 
measurements are therefore not encompassed by any of  the insolubility 
proofs presented in the literature. Could there be a non-spectral 
measurement that is "soluble"? 
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