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Abstract: This paper proposes a solution to the problem of non-locality associated with
Bell’s theorem, within the counterfactual approach to the problem. Our proposal is that a
counteifactual definition of locality can be maintained, if a subsidiary hypothesis be
rejected, “locality involving two counterfactuals”. This amounts to the acceptance of
locality in the actual world, and 2 denial that locality is always valid in counterfactual
worlds, This also introduces a metaphysical asymmetry berween the factual and
counterfactual worlds. This distinction is analogous to what occurs in the detivations of
Bells theorem which assume hidden-variables, where macroscopic locality can be
maintained at the price of rejecting outcome independence. This can be interpreted as
non-locality at the level of potentialitics, which might be identified with the non-locality of
counterfactual worlds, Our solution, presented for the CHSH inequality, is falsifiable, and
we test it with two other setups, Bell’s original incquality and the EPR thought-experiment.

Keywords: Bell's theorem. Countetfactuals. Non-ocality. Metaphysical asymmetry.
Potentialities. EPR thought-experiment.

O TEOREMA DE BELLE A DEFINICAO CONTRAFACTUAL
DE LOCALIDADE

Resumo: Propde-se uma solugio ao problema da nio-localidade associada ao teorema de
Bell, dentro da abordagem contrafactual & questio. A proposta € que uma definigio
contrafactual de localidade pode ser mantida, se uma hipétese subsididria for rejeitacia, a
"localidade envolvendo dois contrafactuais™. Isso equivale a aceitacio da localidade no
mundo factual, mas 4 rejeigio de que a localidade € sempre vilida em mundos
contrafactuais, Isso também introduz uma assimetria metafisica entre o mundo factual e os
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352 OSVALDO PESSOA JR.

mundos contrafactuais. Tal distingdo ¢ andloga a0 que ocorte nas derivagdes do teoremgy
de Bell que supSem varidveis ocultas, onde a localidade macroscépica pode ser mantida as
custas da rejeicdo da hipétese da "independéncia de resultados”. Esta hipétese pode sey
interpretada como uma nio-localidade 20 nivel das potencialidades, o que podetia ser
identificada com a ndo-localidade dos mundos contrafactuais. Nossa solugio, apresentada
para a desigualdade de CHSH, é falsedvel, e ela ¢é testada com duas outras montagens, 3
desigualdade original de Bell ¢ o experimento mental de EPR.

Palavras chave: Teorema de Bell. Contrafactuais. Néo-localidade. Assimettia metafisica,
Potencialidades. Experimento mental de EPR.

1. BELL’S THEOREM WITH HIDDEN VARIABLES

The most important result in the philosophy of physics, at least
since 1952, has been Bell’s theorem. John Stuart Bell (1964) derived an
inequality, involving pairs of cotrelated quanta, which assumes certain
hypotheses, such as the existence of hidden variables A and the restriction
that they act locally. The interest in this result is that quantum theory
predicts that this inequality may be violated, and subsequent experiments
confirmed this violation (Clauser & Shimony, 1978; Aspect & Grangier,
1986). In other words, Bell’s theorem imposes severe limits on the class
of realist interpretations of quantum theory known as leal hidden-variable
theorses.

As a consequence, at least one of the assumptions used in building
such local hidden-variable theories and deriving the inequalities must be
rejected. Basically three assumptions are used (d"Espagnat, 1979).

1) Realism. A hidden-variables theory stipulates that the outcomes
of every measurement have well-defined (albeit hidden) causes, existing at
the time of measurement, which determine the outcomes in a unique way
ot only stochastically.

2) Locality. The influence of a hidden parameter on the outcome of
a measurement cannot propagate faster than the speed of light. Thus, a
measurement performed on the Earth cannot be influenced
instantaneously by hidden vatiables in the star Sirius.
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3) Induction. When experimentally testing Bell’s inequality, a large
set of pairs of particles must be simultaneously measured with three or
four different settings of the macroscopic apparatus. One must assume
that the measurement performed on each pair of particles is independent
of what happens in any other measurement, in order to guarantee a fair
sampling,

Which of the assumptions should be rejected? Realism could be
maintained by abandoning locality, as was done by David Bohm (1952) in
his “causal” interpretation. Or alternatively, the hypothesis that one may
asctibe “elements of reality” to something other than observable events
may be seen as the culprit, as was done by the orthodox interpretation as
2 response to Einstein, Podolsky & Rosen (1935) (for a brief response,
see Pauli, 1949). Induction is often neglected, but it could play an essential
role (Leggett, 1987, p. 880), as could other hypotheses telated to
loopholes in expetimental tests (see review by Lalée, 2001, pp. 672-4).

One additional assumption not spelled out above may be called
determinism in measurements: the set of hidden variables at a certain instant
determines 4 @ unigue way the measurements of amy obsetvable. It is
reminiscent of Leibniz’s principle of sufficient reason: something can only
exist (in our case, a measurement outcome) if there is a cause that makes
it exist. A denial of this assumption leads to stochastic hidden variable theories,
for which the hidden parameters furnish only probabilities for different
outcomes. Around 1974, it was proved that a version of Bell’s theorem
also applies to such stochastic theoties.

This is remarkable because standard quantum mechanics itself may
be considered a stochastic hidden variable theory. Quantum mechanics
furnishes probabilities based on the state or wavefunction wr) of a
physical system, and the parameters defining this state may be taken to be
the hidden variables of the stochastic realist interpretation. The realist
assumption mentioned above is considerably weakened, amounting, in
this case, merely to the thesis that the parameters defining a wavefunction
cortespond to something in reality. If one accepts this weak realism and the
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assumption of induction, the trilemma leads to the conclusion that
quantum mechanics must be non-Jocal. What does this amount to?

Around 1984, an important distinction was made between two
types of mnon-locality, “parameter independence” and “outcome
independence” (see discussion in Shimony, 1993). The first is what we
will call macroscopic localsty: for two separated but correlated particles, the
probability of obtaining a result fot a measured observable in the first
patticle is independent of what observable is being simultancously measured at
the other particle. The second assumption, outcome independence,
assetts that the probability for the first patticle i independent of what result is
obtained in the simultaneous measurement of the second particle.

Granting this analysis, the assumptions involved in Bell’s theorem
are now: weak realism, induction, mactoscopic locality and outcome
independence. The consensus between those who accept weak realism is
that outcome independence should be abandoned. In other wortds, accepting
some kind of reality associated to the quantum tmechanical state, we must
accept that the outcome associated to one particle (say on a planet of
Sirius) is instantaneously correlated with outcomes of experiments in a far
away location (such as on the Farth), even if in an uncontrollable way.

Certain authors, especially Henry Stapp (1985), have detived Bell’s
theotem without assuming hidden-variables, but only making
assumptions about counterfactnal situations. With this, he concluded that
non-locality could be proved without any assumption about realism, but
this claim of generality has been convincingly ctiticized, on the grounds
that he implicitly assumes determinism in measurements (Clifton,
Buttetfield & Redhead, 1990; Dickson, 1993). But it is still instructive to
consider his detivation, taking into account all assumptions involved.

2. BELL’S THEOREM WITH COUNTERFACTUALS

Thete are different versions of the inequality associated with Bell’s
theorem, and different ways of deriving it. The version which will be now
presented is known as the “CHSH inequality”, due to Clauser, Hotne,
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Shimony & Holt (see Clauser & Shomony, 1978, pp. 1889-90, ot
Redhead, 1987, pp. 82-6).

Instead of following the usual derivation, which assumes the
existence of hidden-variables, we will consider the detivation which is
based on hypotheses involving counterfactnals, as done by Stapp (1985). As
out expetimental setup, consider the generation of entangled pairs of
photons, which are detected in opposite sides of the source. On each side,
the polarization can be measured by means of prisms oriented at any
desired angle (in the plane orthogonal to the paths of the photons),
followed by two detectots, an upper one and a lower one (see Figure
below).

+1

D a pooon D
-1 O . o @ @ -

Consider a certain pair £ of detected photons. Suppose that the
prism on the left-hand side of the apparatus is oriented at an angle 4. In
this case, the observable being measured on this side is denoted by I(@)s.
If a photon is detected in the upper photocell, we assign the value +1 to
this observable; if it is detected in the lower detectot, the value attributed
to the outcome of the measurment of I(#) is —1. Contrary to the case of
in which hidden-variables are assumed, hete I(@)i does not denote a
preexisting possessed value of the system, but simply the macroscopic
outcome of the measurement. In this sense, the counterfactual approach
has a more operational flavot, although it does work with the non-
opetational notion of possible measurement outcome.

Now, instead of otienting the prism at angle @, we could have put
it at angle a’. If this setting had been fixed for pair £, then we would have
obtained a value for obsetvable I(z’)s, which could be either +1 or —1.
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The same thing would happen for the observable measured on the tight-
hand side of the apparatus: for angles b or b’, we would measure
observables II(b)i ot II(b), respectively.

To derive the CHSH inequality, we write out the following
expression involving products of measurement tesults obtained on each
pair & of photons: I(@edl(b)e + I(@el(b)e + I(@)eLl(B)e — (@) dl(b)e.
The difficulty is that only 2 single experiment can be petformed on pair &,
so that if I(a)e and II(h) ate measured, the other observables are not. Let
us then spell out the following assumptions.

/) Suppose that the actual expetiment for pair & involved prisms at
angles @ and b, furnishing values I(@), and II(})e.

#) Assume that if the ptism at the right had been set at angle b’
then the value obtained at the left would still be (@), (the same value as in
/), while that at the right the outcome would be some II(b)e.

) Symrnétrica]ly to this previous supposition, assume that if the
ptism at the left had been set at angle a’, then the value obtained at the
right would still be T(), (the same value as in 7), while that at the left the
outcome would be some I(@)s.

i) Assume that if the prisms were set at angles @” and b’, then the
outcomes obtained would have been I(2) (the same as in ) and II(b)e
(the same as in 7), respectively.

Accepting these assumptions, it follows that the following relation
holds for pair 4:

H@ellB)e + Ia)eLl(B)e + (@) llBe — 1(@)ell(B)e = £2. (1)
To see this, just rewrite the left-hand side of the equation as
Ha)e(TIB) + 1)) + I(@)eI(b)e — II(b)s), and notice that either (II(B)e +

1% or (b — I(b)y) is zeto, while the other has value +2 or —2
(Redhead, 1987, p. 84).
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Taking the mean value of eq.(l) for all the patticles in the
expetiment, it is easy to see that it must lie between —2 and +2 (since for
some pairs we get —2 and for othets +2):

T(@e1I(b)ey + L(@edI(b )y + (@ )eA1(B)e) — L(@)e- Ll (b)) < 2. (2)

Quantum mechanics predicts that there are cases that violate
ineq.(2), such as for the “singlet state”, expressed in the following way:

ﬁ"¢o>1®|¢90>2 _—,/17"(090>1®|¢70>2a (3)

whete |@ o) and | @ o) are eigenstates for linear polatization. In this
optical case, the mean value is given by ([({@)e-1I(b)e) = — cos2(b-a), so for
certain angles @, @’, b, b’ the left-hand side of the above inequality is
greatet than 2. Experiments confirm the predictions of quantum
mechanics, so one or more of the assumptions used in the detivaton of
ineq.(2) must be abandoned!

What assumptions have we used?

a) Connterfactnal definiteness. 1f an experiment has not been
petrformed, we can still be sure that if it had been made, definite values
would have been obtained.

b) Locality (in connterfactual language). For a measurement performed
at a certain location at time £ if a remote piece of apparatus were
(counterfactually) modified, that modification would not alter the value
obtained for the measurement at time % This hypothesis (together with
hypothesis a) justifies assumptions 7 and 7 above.

o) Locality involving two  counterfactnals. For a counterfactual
measurement, that is, for an experiment not performed at a specific
location (but which could have been performed), the value that would
have been obtained, with a certain setting of a remote piece of apparatus,
would not be altered by a further counterfactual modification in the
remote apparatus. This justifies assumption 2 above.
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&) Induction. In compating ineq.(2) with the predictions of quantum
mechanics, one must assume that the expetimental samples represent in a
fait way the ensembles considered by the theory.

The novel proposal of this paper is the separation of hypotheses 4
and ¢ which are usually lumped together under the name “locality”
(Stapp, 1985; Leggett, 1986). By doing so, we can reject hypothesis ¢
without abandoning locality (hypothesis 4), counterfactual definiteness, or
induction. Once again, we stress that no claim is being made that the
countetfactual approach is valid for any interpretation of quantum theory,
as suggested by Stapp. Our point is that hypotheses 4, 4, and 4 may be
sustained, if only hypothesis ¢ is rejected. We will now examine the
metaphysical consequences of our proposal and establish a criterion for

its refutation.

3. METAPHYSICS OF POTENTIALITIES AND
COUNTERFACTUALS

What we have ptoposed is more or less analogous to what was
described in section 1, where mactroscopic locality was maintained at the
cost of rejecting outcome independence. One way of picturing outcome
dependence is to interpret the quantum-mechanical state in a realistic way, as
a potentiality Bohm, 1951, pp. 132-3; Margenau, 1954; Heisenberg, 1958,
p. 54; Redhead, 1987, pp. 48-9). When a measurement is performed on
one of the particles of the cotrelated pair, an instantaneous collapse of the
entangled state takes place, modifying the state of the other particle, and
ensuring petfect anticorrelation (assuming eq. 3). The non-local state
collapse is an example of violation of outcome independence. One may
then say that locality is maintained at the level of actualities (macroscopic
locality), but not at the level of potentialities.

In the countetfactual approach, the analysis is analogous. One can
maintain locality (hypothesis 4) if one rejects “locality involving two
counterfactuals” (hypothesis ¢), which amounts to the assertion that, in a
countetfactual wotld, one cannot assume locality. This introduces an
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asymmetry between the factual world, where locality (defined by recourse to
a counterfactual modification at a distance) is valid, and counterfactual
worlds, where locality cannot be always valid. This asymmetry between
reality and possibility makes intuitive sense (there must be sozze difference
between both), but it is generally ignored in metaphysical discussions of
counterfactual worlds (see, for example, Divers, 2002). The factual wotld
is not just one among the possible worlds: its materialization (becoming)
endows it with certain properties (such as locality) which are absent (or at
least might be absent) from counterfactual worlds.

Returning to our analogy between the approaches that assume
hidden vartiables and counterfactuals, there seems to be a connection
between a realistic assumption of posensialities and a more operational
approach involving connterfactuals. We have cornered non-locality either at
the microscopic level of potentialities (wavefunctions, quantum
potentials) or at the macroscopic level of counterfactuals (possible
observable events). Might we try to identify microscopic unobservable
potentialities and macroscopic counterfactually observable events?

4, A CRITERION FOR REFUTATION

The conclusions of section 2 wete based on a specific form of
Bell’s inequality (ineq. 2), detived by him in 1971. This form may be
derived either by the hidden-vatiable approach or by the counterfactual
approach. Therte are many other different inequalities, some of which may
only be derived by the hidden-variable approach, not by the
counterfactual one. For those derivable countetfactually, it could turn out
that hypotheses 4 and ¢ cannot be separated (as was done above, in
section 2). If this is the case, then the “solution” of Bell’s paradox
presented at the end of section 2 is not general, and the asymmetry
described in section 3 is also falsified.

Our proposal, therefore, satisfies the criterion of falsifiability or
refutability, which Katl Popper (1959) considered the most important
characteristic of a scientific hypothesis. We show below that our proposal
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passes two tests, Bell’s original inequality and the EPR thought-
experiment. Other situations, however, could falsify our proposal, such as
a counterfactual version of Bell’s theorem without inequalities
(Greenberger et ak, 1990) or of the Leggett (2003) inequality, which
remain as open problems.

(a) Bell’s original inequality

Consider Bell’s original derivation in 1964, based on local hidden
variables, which furnished an inequality which may be rewritten as:

| e TlB) — T@el@)) S 1+ ). @

Instead of four pairs of measurements, this inequality uses only
three, so apparently hypothesis ¢ (locality involving two counterfactuals)
does not have to be used, assuming that the actual experimental setting
has been Ifa)y and II(h)e. However, the derivation of ineq.(4) makes
mmplicit use of the property of “strict anti-correlation”, which may be
expressed as: (I(a)e-11(h)r) = —1, whete a’=b’. This implies that the values
for I(h) and 1I(H) in ineq.(4) must have opposite signs, but this is only
watranted if assumption (i) of section 2 is valid. The rejection of this
assumption by means of the rejection of hypothesis ¢ blocks the
derivation of the inequality.

(b) EPR thought-experiment

The thought-experiment devised by Einstein, Podolsky & Rosen
(EPR) (1935) may be briefly stated as follows. F'or the entangled state of
eq.(3), a scientist conld measure, with the equipment at the left hand side, the
state of linear polarization associated to the prism setting @=0°, and
accotding to the outcome (+1 or —1) he could be sute of the “element of
reality” associated to the measurement at the far-away right hand side, set
at b=0°, which would give the opposite value (strict anti-correlation). But
instead of doing this measurement, he conld also choose to measure the
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incompatible observable associated to @’=45°, and with this he could be
certain of the outcome obtained at the far-away piece of apparatus, set at
b’=45°, However, argue EPR, the choice of the scientist cannot affect in
any way the situation at the far-away region, which is their assumption of
locality. Therefore, well-defined values for both incompatible observables
must exist simultaneously at the far-away region, and thus quantum
theory is incomplete (since it does not associate well-defined values for
incompatible observables).

The EPR thought-expetiment does not involve any actual
measurements, but only measurements in two different counterfactual
wortlds. However, by rejecting hypothesis ¢ we deny that locality must be
valid in a counterfactual wotld. Therefore, EPR’s argument does not
follow.

The countetfactual definition of locality (hypothesis ) only applies
if 2 measurement is actually performed. One could modify EPR’a
argument, and consider that one measurement (at the left-hand side) is
performed, and that the other one (at the same side) is counterfactual.
While locality (hypothesis 4) could be applied for the actual measurement,
it could not be applied for the counterfactual scenario (since hypothesis ¢
has been rejected), so the incompleteness argument would not follow.
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