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Reversibility and the Interpretation of Mixtures in Quantum Mechanics!
Osvaldo Pessoa, Jr.

Universidade Estadual de Campinas, Brazil

The term “experimental philosophy” has been used to refer to the solution of what
were considered philosophical problems by means of laboratory experiments. A re-
cent example of this was the experimental violation of the Bell inequality, which
ruled out certain philosophically appealing “realist local” theories as alternatives to
quantum mechanics (QM).

Following the spirit of such experimental philosophy, this paper proposes a feasi-
ble test between two different interpretations concerning the nature of “mixtures” in
QM. The use of delayed coincidence techniques seems to show that the process of
mixing beams of light in different polarizations is reversible, favoring a weak version
of the so-called “ignorance interpretation” over the “instrumentalist” view.

The first two sections survey in a conceptual way the philosophical discussion about
the interpretation of mixtures. This is followed by a review of the mathematical notation
and of procedures for preparing and analyzing mixtures. The argument that differently
prepared but equivalent mixtures may be distinguished by measuring particle fluctua-
tions is then showed not to be valid, at least in the example considered. This leads the
way for the experimental argument proposed in favor of the ignorance interpretation.

1. The problem of interpretation of mixtures

“Given a beam of unpolarized electrons, should one think of each electron as hav-
ing a definite spin orientation?” With these words, U. Fano (1957, p. 74) posed the
problem of the interpretation of mixtures in QM. A beam with definite spin polariza-
tion corresponds to a “pure state” in QM, being represented by a state vector, while a
beam of unpolarized electrons is usually associated with a “mixed state”, being repre-
sented by a density operator. A single density operator can be resolved into many dif-
ferent combinations of pure states. Thus, the problem is whether the mixed state rep-
resenting a given system should be thought of as a specific but unknown combination
of pure states, or as a unique state in its own right.

In optics the discussion goes back to the 30’s, when Birge had pointed out that
there was “no scientific reason for the assumption, so commonly made in texts, that
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unpolarized light consists of plane-polarized components, oriented in all azimuths”.
He therefore concluded that “no experiment can give us any information on the nature
of unpolarized light”, besides the fact that “if such light is split into components, in
any given apparatus, no preferential polarization will be found” (Birge, 1935, pp. 180,
182). If that is so, then the acceptance of an “instrumentalist” point of view would
lead to the conclusion that any beam of unpolarized light is in the same state of polar-
ization. That was the philosophical step taken by Fano (1957, p.76), for whom the
definition of state should only be concerned with predictions of measurement out-
comes in future experiments.

The opposing view, according to which an unpolarized beam of light consists of
photons in definite but unknown polarization states, has been called the “ignorance”
interpretation (Igl) of mixtures (term due to Putnam 1965, p. 98). It was the tradition-
al view in statistical QM (see Fano, p. 76, and Park 1968, pp. 215-6), which separated
clearly between the “objective” probability of measurement outcomes associated with
pure quantum states, and the “subjective” probability arising from our incomplete
knowledge of the microscopic state of a many-particle system.

Within this interpretation, one can speak of different but equivalent mixtures. This
is the case of two beams A and B which are prepared by mixing different pure beams,
but which yield the same mean values for any observable measured on the beams. If
the preparation procedure is unknown, the ignorance view still maintains that equiva-
lent mixed beams may be different.

In spite of being considered “unrealistic” by Fano (p. 74), the Igl can be classified
as a “realist” view, since it conceives that distinct but indistinguishable physical states
may underlie a same observable phenomenon. The belief in such reality arises from
reasons other than empirical adequacy, reasons such as simplicity or uniformity of the
physical theory. A mixture considered within the IgI will be referred to as a “realist”
(or “classical”) mixture. The “realism” of the Igl is however of a different sort from
what is usually referred to as “the realist interpretation of quantum mechanics”. For
the latter, the elements of reality which underlie the observed phenomenon are vari-
ables which assign, for instance, well defined position and momentum to particles.
The Igl, in contrast, is closer to what can be called “realism of the wave function” (the
“naive realism” of Pearle 1986, p. 442), a view that assigns some sort of reality to
probability amplitudes in configuration space.

2. The philosophical debate

In the 70’s the discussion about the nature of mixtures became rather intense in the
philosophical literature. We will examine an important argument in favor of the Igl in
section 5, concentrating here on two different debates that took place, both involving
correlated quantum mechanical systems. The typical example of such a composite sys-
tem is the Einstein, Podolsky & Rosen (EPR) setup. In Bohm’s (1951, pp. 614-619)
version of the EPR setup, the correlated systems are two particles “entangled” with op-
posite spins, described by a pure composite state which has cylindrical symmetry about
the trajectory of the particles. Another much explored example arises in the formal the-
ory of measurements in QM. The measuring apparatus is considered a quantum system
which becomes correlated to an object system during the measurement interaction.

The first debate arose after an argument due to van Fraassen (1972, pp. 325-31)
that the IgI leads to inconsistencies. As pointed out by Hooker (1972, pp. 97-106)
and Grossman (1974), implicit in van Fraassen’s critique was the acceptance of the
so-called “reduction assumption”. This assumption applies to correlated systems
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which are described by a pure composite state. If such a state is non-factorable (en-
tangled), then one cannot assign a pure state to each individual subsystem. For mea-
surements performed on only one of the subsystems, the best available description of
the subsystem is considered to be a “reduced density operator” obtained by means of
the mathematical operation of taking a “partial trace” (see for instance d’Espagnat
1976, pp. 58-61). The reduction assumption accepts such an “improper mixture” as
the actual state of the subsystem. There are no compelling reasons to accept such an
assumption, so that the Igl can be sustained. There have even been attempts to dis-
solve the inconsistencies without rejecting neither the Igl nor the reduction assump-
tion, within the framework of quantum logic (Gibbins 1983).

The problem raised for the Igl by the study of correlated systems is not that of for-
mal inconsistencies. The problem is that when describing the state of a beam, we
usually do not know whether the particles of the beam are correlated to other unob-
served systems. Thus, given a beam of unpolarized light, we might have a classical
mixture of pure states, or we might have one subsystem of an entangled composite
pure state. This possibility weakens the ignorance interpretation. Our initial charac-
terization of this realist view, to be called the strong Igl, would have to be conditioned
on the requirement that the beam is not correlated to other systems in the environ-
ment, which is quite a stringent condition. On the other hand, the weak Ig/, which
considers the possibility of correlations with the environment, does not answer Fano’s
question in the affirmative. A beam of unpolarized electrons might not consist of
electrons in well-defined spin states (before a measurement takes place), if such elec-
trons are correlated to other particles.

The second debate begun in the early 70’s involved A. Fine’s (1970) “insolubility
proof” to the “measurement problem”. Such a proof applies to unitary measurement
interactions, i.e. it only involves the Schrédinger equation and not the projection pos-
tulate. Fine was able to show that there is no set of apparatus “pointer states” such
that for any initial object state, the final composite state is in a realist mixture involv-
ing such pointer states. The important point for us here is that Fine’s proof made use
of the Igl, and assumed a special rule for the evolution of mixtures, which H. Brown
(1986) called “real unitary evolution” (RUE). Such a rule applies the usual unitary
evolution to each pure subsystem composing the mixture, leading to a new realist
mixture. RUE prohibits replacing such an evolved state by any other mixture which
according to the instrumentalist interpretation is equivalent to it.

The whole project of formulating insolubility proofs was criticized by Park
(1973), who attacked the Igl which underlies Fine’s approach. Contrary to Park’s
contention, however, the acceptance of his instrumentalist critique does not under-
mine the several insolubility proofs proposed in the literature, but only a possible
positive solution to the measurement problem which would involve apparatus mix-
tures (see Pessoa 1990, p. 101).

Park (1968, pp. 214-7) is probably the most vocal defender of the instrumentalist
position, within the framework of the “statistical interpretation of QM”. According to
this widespread view, the state vector does not refer to an individual system, but only
to an “ensemble” of identically prepared systems. Park therefore does not have to ad-
dress the additional problem of whether an unentangled individual particle can be in a
impure mixture. According to the Igl, a single uncorrelated particle is always in a
pure state, although our lack of knowledge might allow us to describe such a system
as a mixture.
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3. Mathematical notation

Having surveyed the problem of interpretation of mixtures in a conceptual way, let
us introduce the mathematical notation for describing pure states and mixtures, and
look at the experimental procedures for obtaining light beams in such states.

A pure state can be represented by a normalized vector o> in an appropriate Hilbert
space ¥. According to the standard approach, the measurement of an observable rep-
resented by an operator Q in 3 yields as possible outcomes the eigenvalues a; associat-
ed with the eigenvectors ¢; of Q. If the pure state is written as a superposition of such
eigenvectors, 10> = ¥; a;eld;>, then the probability for an outcome g; is given by la;l2.

A mixture is represented by a density operator W = 3.; wj-ﬁ [‘I‘ ] acting on%. The co-
efficients w; give the probability of obtaining the elgenvalue B;as J the outcome of the
measurement of an observable R with eigenvectors '¥; ) The operator 3 ['¥;] projects any
state vector onto the one-dimensional subszpaoe spanned byl‘PJ) and can be written? as
P['¥j] = I'¥;X¥jl . A mixture for which WZ =W corresponds to a pure state.

Now let us suppose that we are going to measure the observable represented by
Q=2 a;*P[¢;] for the system represented by the density operator W = Z wiP['¥;] .
What are the probabilities for obtaining the different eigenvalues a; of Q One W way of
calculating this is by transforming from the basis {'¥;} to the basis {¢l) using a set of
equatlons I¥;) = 3 cji*l¢;) . We would obtain: W= i i * Vi **10;X0;l , where v;; =

Zd wj cji ’fhe matiix [ vijlis the “density matrix” in the representation {¢;}. The di-
agonal elements vi; furnish the probabilities for measuring the eigenvalue a;, while the
off-diagonal terms (v;;' (i#i') express the “coherence” of the state, the fact that the sys-
tem cannot be represented as a classical mlxture of pure states I¢l) The density matrix
can be shown to be self-adjoint (vj;' = v;;*) and positive definite (vijjisreal and 20),
with unit trace (3; v;; = 1) (Fano, 1957, p. 77). In the representation [‘I‘ }, the density
matrix has dlagonal elements w; and null off-diagonal elements.

Any density matrix may be diagonalized in some orthogonal basis of representa-
tion. Such a basis is unique if none of the diagonal elements are equal, and is a candi-
date for being the set of pure states that constitute the mixture, according to the Igl.
But this interpretation should also allow for a mixture of non-orthogonal pure states,
so that there will always be “ignorance” unless the method of preparation is known.

4. Preparation procedures

Let us now survey the operational procedures for characterizing the polarization
state of a quasi-monochromatic beam of light. Assuming that the photons are not cor-
related to other systems, then it is sufficient to consider a Hilbert space of dimension
K=2 spanned for instance by the vectors l¢) and Idgg), which correspond to linear po-
larization at 0° and at 90°, in relation to some reference axis. To measure the polar-
ization state of the beam, the usual procedure is to determine the four “Stokes param-
eters”, which requires measurements of transmittance behind four filters: an isotropic
filter, 2 horizontal linear polarizer (0°), a linear polanzer at45° and a right-circularly
polarized filter (Shurcliff 1962, 19-25). With these K2 real numbers one is able to de-
termine the normalized density matrix representing the polarization state of light,
which in general will not correspond to a pure state.

To obtain a pure beam, one can simply pass the original mixed beam through a
dichroic polarizer, oriented say at 0°. Another way of doing this is to pass the beam
through a birefringent analyzer such as a Wollaston prism, which separates the beam
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into two orthogonal components, say I¢o) and ldgq) (see figure 1). If a detector is
placed in the channel corresponding to ldgg), the superposition between these two
beams will be destroyed with a collapse of the state vector, and one can assume that
the undetected beam that has been selected is pure and unentangled. In the 2-dimen-
sional case there is a simple way to check whether the beam is pure, by measuring if
all of the beam is transmitted through another appropriately oriented polarizer.

A
, ldoo>
9
Unpolarized Nz Measurement
Beam ‘:{,/
Wollaston ) \
. I'd 7
Prism |[$o> Prepared
v Pure Beam
Thin Lens

Figure 1: Preparation of a pure beam.

Once pure beams in different polarization states have been obtained in the labora-
tory, they can be “mixed” with each other, resulting in a beam which is a impure mix-
ture. The simplest way for mixing two light beams is by using a beam splitter such as
a half-silvered mirror (see figure 2a), but part of the beams is usually lost. In order to
mix two beams with practically no losses, one can reverse the procedure for separat-
ing the orthogonal polarization components, as indicated in figure 2b.

I$0> Mirror [$0> ]
#

l$g0> A\ iM."““'e ) l$g0> ‘ Wollaston
Prism

Half-Silvered !
\b Mirror Thin Lens

(A) (8)
Figure 2: Procedures for mixing pure beams: (a) beam splitter; (b) reversed prism analyzer.

Mixture

The use of reversed analyzers in polarization measurements dates back to Jamin in
1868, with the development of polarization spectroscopy (see Fran(on & Mallick 1971,
pp- 55-63). The idea of using reversed analyzers to test the principles of QM was appar-
ently introduced by Bohm (1951, p. 606), with the Stern-Gerlach apparatus, to show that
the separation of a pure beam by an analyzer does not destroy the coherence between the
beams (state collapse does not occur at the analyzers). The realization of this thought-ex-
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periment for single particles has only been achieved in the 80’s, for neutron spin (Badurek
et al. 1986, pp. 137-141) and for photon phase (Grangier et al. 1986, pp. 104-106).

Now that we are able to produce pure beams and to mix them, consider the two
following mixtures (Park 1973, pp. 214-5). Mixture A is prepared by combining with
equal intensities two pure beams linearly polarized at 0° and at 90°, the states of
which are denoted by I¢g) and I¢gg). The density operator is given by:

Wa =(172)+ dg) (9ol + (1/2)=1gg) (ol ey

Mixture B is prepared by combining equal amounts of pure beams linearly polar-
ized at 45° and at 135°, in states denoted by I¢4s) and 1¢;3s) :

Wp = (172 1045) (Das) + (1/2)+10135) (9135 @

These latter states may be expressed as linear combinations of the states polarized at
0° and 90°:

1045) = (1/ V2)1099) + (1/V2)100)

3
19135) = —(1/V2)1d0) + (1 / V2)10gg) ®
Now when we represent Wp in terms of the basis {$q, g9} we obtain the right-

hand side of eq.(1). Mixtures A and B are therefore equivalent. They are both repre-
sented by the density matrix 1/2¢I, where I is the 2-dimensional identity matrix. This
equivalence means that any attempt to distinguish the two mixed beams by means of a
polarization analyzer fails. Whatever the orientation 0 of the analyzer, the beam in-
tensities measured in both channels would be the same.

Suppose that the analyzer prism is oriented at 6=0° so as to separate any beam into
components polarized at 0° and 90° (figure 3). According to the Igl, the photons of
mixture A that are in state I¢g) will all go through the same channel, falling on the
same detector. Likewise for photons in state I¢gg), which go through the other chan-
nel. In total, half of the beam will go through each channel.

Preparation
|¢0>;, A Prisms

©=0°

W
(X Mixture A

|$ @
- v

|$45> 4
o= 45°
ky"l N
(2 Mixture B
|$135>
v

Figure 3: Measurement of polarizations at 0° and 90° on mixtures A and B.
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In the case of mixture B, a photon in state l45) has a 50% chance of being counted
in each of the two detectors. Likewise for a photon in state I¢135). In total, roughly
half of the photons will be counted in each detector, which is the same as for mixture
A. There is however a qualitative difference between the two cases. Before a detec-
tion occurs for mixture B, one cannot say that the photon went through one channel or
through the other. The system is still in the superposition expressed by eq.(3), repre-
sented in figure 3 by dotted ribbons. One can say that the measurement of the polar-
ization component oriented at 0° and 90°, on beam B, involves a collapse of the state
vector, while on beam A it does not.3

5. Fluctuation argument for the ignorance interpretation

An instrumentalist tends to pay more attention to the practical limitations affecting
operational procedures than a realist. Notwithstanding this tendency, two different argu-
ments for distinguishing beams A and B have been given by defenders of the Igl, based
on the existence of particle fluctuations. We will adapt such arguments, given originally
for spin-1/2 particles, to the optical example presented in the previous section.

Consider the preparation of mixtures A and B. According to Grossman (1974,
333-338), one can never be sure that exactly half of the particles have been prepared
in one of the two orthogonal polarization states constituting each mixture. The fluctu-
ations in the preparation of the mixed beams would make them be described by slight-
ly different density matrices, so that they could be distinguished.

The other argument is due to d’Espagnat (1976, pp. 100-102), for the case in
which beams A and B have been prepared with exactly equal proportions of pure
states. Consider again the measurement of linear polarization along 0° and 90° by
means of an analyzer (figure 3). For beam A, since exactly half of the photons are in
state ¢, and half in state I¢gg), then in the long run there will be no fluctuation in the
number of counts obtained on each detector: 6,=0 . For beam B, however, each
photon has a 50% probability of being detected in each channel, and such random
events are subject to fluctuations of the order of g = 1/2VN (binomial distribution),
where N is the mean number of photons per unit time in each beam. Mixtures A and
B could therefore be distinguished by their particle fluctuations.

It is curious that these two argumments in favor of the Igl neutralize each other, like
parallel coherent waves with opposite phases. D’Espagnat’s fluctuations of measure-
ment outcomes on the mixed beams is counterbalanced by the fluctuations arising in the
preparation of the mixtures. In fact, if mixtures A and B are prepared by the procedure
indicated in section 4 (figures 1, 2b and 3), and we consider that the initial light source
has a Poissonian-fluctuation of VN (for a beam of N photons), then the measurements to
distinguish beams A and B will yield the same fluctuation of 6,=0p = (1/2+VN.

The fluctuation argument for the Igl breaks down, at least for the preparation setup
considered in this paper. The problem remains of whether such an argument can be
made valid for some other experimental arrangement, or whether differently prepared
but equivalent mixtures can never be distinguished by fluctuation measurements>.

6. Reversibility as a test for the ignorance interpretation

The instrumentalist and the ignorance interpretations disagree on the issue of
whether the process of mixing is reversible.
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In QM, it is customary to assign an “entropy” to mixtures which is greater than the
entropy of pure states (von Neumann 1932, pp. 379-90; Belinfante 1980, pp. 10-5).
This accounts for the entropy increase accompaning measurements, since in general a
measurement transforms a pure object system into a mixture (a process which involves
state collapse). Such a definition of entropy fits in well with the instrumentalist view,
for which the procedure of mixing different pure states is always irreversible.

For the Igl, however, if one knows how the pure beams were combined, then it is
possible to reverse the mixing in a process of “unmixing” which yields the original pure
beams again. Such a process would not have to involve any measurement, state col-
lapse, dissipation of energy, or loss of part of the beams. If however one does not know
how a mixture was prepared, then one would not know how to reverse the process.

The issue of the reversibility of mixtures can be used as a test in favor of the weak
Igl. Consider a “photon cascade” in which pairs of photons correlated with orthogo-
nal polarizations are emitted (see figure 4). The photon cascade used by Aspect et al.
(1981) is obtained from a beam of calcium excited by tunable laser light, with the pair
of correlated photons having frequencies 423 nm and 551 nm. Each pair may be
emitted in any direction, but only those heading in opposite directions towards the de-
tectors D; and D, are selected.

Delayed Coincidence
Monitoring S 3

Lasers

Figure 4: Experiment for reversing the process of mixing.

After appropriate filtration, pairs of photons may be detected in delayed coinci-
dence. A photon detected at Dy “triggers a temporal gate” for detection at D, and the
probability of a count at D, becomes much greater than if no photon had been detect-
ed at D (Grangier et al. 1986, pp. 101-102). This is a convenient way of “marking”
or “individuating” an undetected photon, although in practice one cannot be sure that
such a photon will fall upon the gated detector. While the shutter S is closed, the
beam passing through analyzer W is pure and oriented at 0°, so that all of the beam
falls on D, and one can measure a certain coincidence rate (in their setup, Aspect et
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al. (1981) measured 150 true coincidence counts per second, out of 105 individual
counts per second at each detector).

Upon opening the shutter, an additional beam polarized at 90° can be mixed to the
one polarized at 0° at the beam-splitter H, yielding mixture A defined in eq.(1). If
this mixture is then separated by the analyzer into components at 0° and 90_, will the
previous coincidence rate still be observed between counts in D; and D,? We would
expect so. The mere introduction of the additional beam, which does not modify the
beam intensity detected at the final channel at 0°, should not affect the correlations,
since different photons do not interact. We expect the coincidence rate to be main-
tained by the mixing and separation of the additional beam, and this would indicate
that the same photons prepared at 0° from the cascade arrive at the detector after mix-
ing and unmixing. We would have marked one of the two pure subsystems compos-
ing the mixture, and been able to retrieve the pure beam after unmixing.

Such a thought-experiment is relatively easy to perform, and if the result we ex-
pect turns out to be confirmed, then we have a good argument for claiming that the
process of mixing is reversible. This lends support to the Igl, since such a view con-
ceives that the pure subsystems composing the mixture maintain their individuality.

7. Conclusion

Two conclusions have been obtained. First, contrary to d’Espagnat’s fluctuation
argument, it seems that there is no simple way to distinguish between two “different
but equivalent mixtures” if the preparation procedure is not known. We have arrived
at this conclusion, however, only by looking at a particular type of experimental
setup. The problem of whether this result is general or not thus remains open. In par-
ticular, it might be possible to distinguish beams described by the same density matrix
by means of 2nd order coherence effects-5

The second conclusion is that there is an experimental argument for sustaining that
the process of mixing light beams is reversible. In other words, if the preparation is
known, we can devise a reversed setup so that we can be confident that the “same”
particles constituting the original pure beams will constitute the corresponding un-
mixed pure beams.

As the photons are detected in D; they are not correlated to their pairs anymore, since
these had to be previously measured in order to trigger the detection gate. We are there-
fore assuming that the particles constituting the mixture are not correlated to other sys-
tems. Thus, our argument can only lend support to what we have called the weak Igl.

We can now attempt to answer Fano’s question. Given an unpolarized beam, we
assert that each of the component particles is in a definite polarization state, as long as
correlations with other systems in the environment can be neglected. There is howev-
er no simple operational means of distinguishing two unpolarized beams. Our adop-
tion of the weak ignorance interpretation is based on those situations in which the pro-
cedure for preparing the mixture is known. Implicit in our answer, therefore, is the
assumption that beams with known preparation have the same nature as beams the
preparation of which we ignore.
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11 wish to thank Linda Wessels and Stephen Kellert for discussions on the subject
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Pesquisa do Estado de SNo Paulo” (FAPESP).

2To see that such an operator effectively projects the vector ¥} = ¥ by | '¥)
onto I'¥;), yielding the vector b;s I'¥';} , we just need to remember that the inner prod-
uct (¥;I'¥}) equals 1 if j=k, and 0if J # k (since the set of eigenvectors is an orthonor-

mal bsis of 36). We therefore have: P['Wj] I'¥) = Zy bye | '¥)) (¥jI¥)) = bye 1 'Fj)

3The photon is absorbed by an electron during detection, so it becomes ambiguous to
speak of a “collapse” in one case but not the other. This ambiguity, however, does not
arise for situations such as the detection of particles in a cloud chamber, where only part
of the object’s energy is absorbed by the detector. Another clear-cut example is that in
which the object is an excited atom, and the emitted photon is taken to be the carrier of
the interaction between object and measuring apparatus (see Pessoa 1990, pp. 81-91).

41 et us write out as (n + ¢) the number of particles and the standard deviation ex-
pressing the fluctuations (for reference, see Bevington 1969, pp. 33, 40, 60). For each
of the four initial unpolarized beams subject to the Poisson distribution, we have:

(0o 65) =N+ VN @

The selection of a pure beam from each of these mixed beams (figure 1) leads to
the beams | ), | dgg), | d45), and | ¢;35) of figure 3, a process involving the binomial
fluctuation:

(pto)=(1/2NxVN) (122N £VN)12=(12) s Nt (IN2) AN  (5)

For mixture A, all of the photons in the pure state |¢,) (and only these) go to the
upper channel. At detector D; we therefore have:

(np £ G4) = (1/2)*N £ (1N2)* VN (6)
For mixture B, we can first add the contributions from | ¢, and | ¢gq):

(£ Op)=  [(1/2)*N + (1/2)*N] £ ([(IN2)VN]2 + [(1N2)+VN]2 )12
N +VN

= )

This is the same fluctuation as in the source (eq. 4). Now since each photon in
mixture B has a 50% chance of being detected in the upper channel, we apply the bi-
nomial fluctuation to the whole beam, as in eq.(5):

(gt op) = (1/2(N+IN)+ (1/2)«(N £ VN)I2=~ (1/2):N (IN2)¥N (8)
Equations (6) and (8) are the same, QED.

51t is straightforward to show that the result of endnote 4 can be extended to any
two equivalent mixtures in any finite dimension. This follows as long as the initial
unpolarized beams exhibit a Poissonian distribution for photon counts, which is typi-
cal of chaotic light sources as well as coherent ones (such as a laser above threshold).
In principle, one could distinguish differently prepared but equivalent mixtures for
more noisy sources.
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The above result assumes that the beam intensities are constant, so that only 1st
order coherence effects are present (particle fluctuations). For chaotic sources, this cor-
responds to sampling times T that are much larger than the “coherence time” T, of the
light source (typically 10-9 s). If howeverT«T ,, 2nd order coherence effects become
important (wave fluctuations), and the fluctuations are given by 6= (N2 + N)1/2 in-
stead of G,=VN . In this limit, different but equivalent mixtures can be distinguished
by their fluctuations! An experiment can be readily performed by scattering laser light
from plastic balls suspended in water, for which T,=10-1 s (Loudon 1973, pgs. 98-99,
214-221).
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